

Quantifying California's Greenhouse Emissions with Atmospheric Inverse Approaches: The CALGEM Project

M.L. Fischer, C. Zhao, W.J. Riley, Lawrence Berkeley National Laboratory

A. Andrews, A.I. Hirsch, S. Montzka, C. Sweeney NOAA ESRL Global Monitoring Division

Acknowledgements: P. Tans, J. Kofler, E. Crossen, E. Dlugokencky, J. Eluszkiewicz, C. Potter, W. Salas, T. Szegvary, S.C. Wofsy

This work is supported by the California Energy Commission's Public Interest Environmental Research program

- Overview of GHG trends
 - Focus on California emissions
- CALGEM Measurements
- Two Inverse Approaches
 - "Gas ratio" or "unknown:known"
 - "Formal Inverse": Optimize a priori emissions to match measurements using meteorological and Baysian statistical models
- Summary
- Further work

Climate Forcing Pre-Industrial - Present

- Total non-CO₂ GHG forcing ~ equivalent to CO₂ forcing globally
- Non-CO₂ gases much stronger absorbers than CO₂ by mass
 - $CH_4 (\sim 20 \times CO_2)$
 - $N_2O (\sim 300 \times CO_2)$
 - High GWP (e.g., CFCs, HFCs, SF_{6}) (~ $10^3 - 10^4x CO_2$)
 - Tropospheric ozone

California GHG Emission Trends

- CO₂ dominates GHG emissions
 - Controls must startwith CO₂
- Non-CO₂ gases more uncertain
 - Opportunities for control exist in this sector
 - Quantifying current emissions important

California non-CO2 GHG Emissions

- Non-CO2 GHGs largely from biological sources
- Uncertainties are large
 - many sources not readily metered
 - Some gases not currently included (e.g. CFCs)
- Atmospheric approaches can provide independent constraints
- Evaluation of uncertainties is an essential challenge

CEC, 2006; USEPA, 2007

Instrumentation

- Both Sites: 12 Flask System
 - Twice daily samples
 - CO₂,CH₄,N₂O,CO
 - high GWP gases
 - ¹³CO₂, ¹³CH₄, CDH
- Walnut Grove:
 - CH₄/CO₂ analyzer- 3min
 - CO₂/CO rack 3 min
 - ²²²Rn monitor 30 min
 - ¹⁴CO₂ (w/ LLNL)

Atmospheric Tracers

- ²²²Radon from soils
 - Short half life (3.8 day) gives atmospheric contact with terrestrial systems
 - Emission rate depends on ²³⁸U soil content, moisture
 - Need CA specific model calibration including soil moisture
- CO combustion tracer
- Isotopes
 - ¹⁴CO₂ none in fossil fuel
 - ¹³CO2 (Nat gas vs. gasoline)
 - ¹³CH₄, CDH₃ (landfills, vs. nat. gas)

(Szegvary, 2006)

In-situ Measurements at Walnut Grove

First 9 months reveal:

- Elevated mixing ratios at 30, 91m indicate strong regional-local emissions
- •Strong correlation of diurnal variations in CO₂, CH₄ and ²²²Rn implicates variations in boundary layer
- •Synoptic variations offer opportunity to extract emissions information
- 483 m mixing ratios generally near background levels at night (decoupled from surface)

Gas-Ratio proach (1) GHG emissions from ²²²Rn Correlation

Mixing model for GHG flux:

$$\langle F_x \rangle = \langle F_{Rn} \rangle * dC_x/dC_{Rn}$$

(if $\langle F_{Rn} \rangle = 0.3$ atom cm⁻² s⁻¹)
 $F_{CO2} \sim 35$ t $CO_2/ha/yr$
 $F_{CH4} \sim 200$ kg CH_4 /ha/yr
 $F_{N2O} \sim 5$ kg $N_2O/ha/yr$
 $F_{CO} \sim 130$ kg $N_2O/ha/yr$
note: slopes all estimated to $\langle 10\%$
Next steps:

- Check Rn emissions
 - Trends might be determined if Rn emissions remain constant (Messager, 2008)
- Use CO as an alternate tracer

Rn (Bq m⁻³)

Gas-Ratio Approach (2) GHG correlations with CO

- High correlations to CO yield accurate estimates of slope
- Need footprint weighted CO emissions for use in estimating GHG emissions

Gas-Ratio Approach (2) High-GWP Gas Emissions

- Good Rn (and CO) correlations obtained for several important high-GWP gases
- Applying Rn mixing model yields estimated emissions for 14 high-GWPs in central CA
- If high-GWP gas emissions similar in other populated areas then emissions are ~ 14 MtCO_{2equiv} yr⁻¹
- Find CFC11 and CFC12
 emissions are also ~ 10
 MtCO_{2equiv} yr⁻¹, similar to other
 high-GWP gases

HFC134A (ppt)

CFC11 (ppt)

CO (ppb)

Formal Inverse (1) a priori CH₄ Flux Maps

- EDGAR3.2 (1x1degree)
- Landfill (point sources)
 - Landfill specific loading with substrate dependent residence time (EPA)
- Animal Ag. (county level)
 - USDA county level stocking
 - Dairy/meat emission factor
- Natural gas dist./use (county level)
 - County level facility/usage statistics (ARB)
- Wetlands (4 km)
 - NASA-CASA (Potter, 2006)
- Crop Agriculture (5 km)
 - County level DNDC (Salas et al., 2006)

Formal Inverse (2)

WRF Meteorology for Tower Sites

- Outer grid covers Western US at 40 km resolution
- Middle grids cover Bay Area and Sac. Valey at 8 km resolution
- Inner grids cover Sutro and Walnut Grove sites at 1.6 km resolution

Formal Inverse (3) WRF-STILT Footprints for WGC Tower

- Example of average footprint for Oct-Dec, 2007 (from hourly maps)
- Largest surface influences (purple) for Bay Area and Central Valley
- Use each hourly footprint maps to calculate predicted CH4 signal

$$CH_{4pred} = F_{CH4} * foot$$

Measured and Predicted CH₄: Regression Analysis

 Edgar and CA specific emissions estimates produce predicted vs. measured signals with similar slopes (0.92 ± 0.1 and 1.12 ± 0.12 respectively)

Formal Inverse (5): Posterior CH₄ Fluxes

- Estimate scaling factors for each emission source in Baysian approach
- a priori errors assigned at 30% for each source

•Results:

- 1) Source analysis retrievals estimate landfill and crop emissions smaller (0.8 ± 0.05, 0.63 ± 0.05), and livestock emissions higher (1.6 ± 0.15)
- 2) Region analysis retrievals demonstrate that only regions near tower are constrained by measurements (reducing uncertainties) while distant regions are not

Source Analysis

Region Analysis

Summary

- Compliance with AB-32 requires verification of emissions reductions
- Atmospheric measurements provide independent and complementary test of inventories
- Non-CO₂ GHG particularly uncertain
- CALGEM measurements demonstrate that non-CO₂
 GHG signals are readily measurable
- Gas-ratio emission estimates may constrain emissions but more work is needed
- Formal inverse approach combines data and model to refine a priori CH₄ emission estimates

Further Work

- Quantitatively assess inverse model uncertainties
 - Include profiler data to assess meteorological model errors
 - Compare/combine gas-ratio and inverse methods
 - Combine data from WGC, STR, aircraft flights in inverse
- Measure other GHGs and tracers:
 - CO₂: ¹⁴CO₂ for combustion and fossil attribution
 - N₂O: Formal inverse model (DNDC prior + automobile, other)
- Combine data across activities with other groups
 - CARB CO inventory as alternate tracer
 - ARCTAS measurements at WGC
 - Work toward multi-site data analysis system for CALNEX2010